Publications

Publications / Conference

Flat plate puncture test convergence study

Ammerman, Douglas J.

The ASME Task Group on Computational Mechanics for Explicit Dynamics is investigating the types of finite element models needed to accurately solve various problems that occur frequently in cask design. One type of problem is the 1-meter impact onto a puncture spike. The work described in this paper considers this impact for a relatively thin-walled shell, represented as a flat plate. The effects of mesh refinement, friction coefficient, material models, and finite element code will be discussed. The actual punch, as defined in the transport regulations, is 15 cm in diameter with a corner radius of no more than 6 mm. The punch used in the initial part of this study has the same diameter, but has a corner radius of 25 mm. This more rounded punch was used to allow convergence of the solution with a coarser mesh. A future task will be to investigate the effect of having a punch with a smaller corner radius. The 25-cm thick type 304 stainless steel plate that represents the cask wall is 1 meter in diameter and has added mass on the edge to represent the remainder of the cask. The amount of added mass to use was calculated using Nelm's equation, an empirically derived relationship between weight, wall thickness, and ultimate strength that prevents punch through. The outer edge of the plate is restrained so that it can only move in the direction parallel to the axis of the punch. Results that are compared include the deflection at the edge of the plate, the deflection at the center of the plate, the plastic strains at radius r=50 cm and r=100 cm , and qualitatively, the distribution of plastic strains. The strains of interest are those on the surface of the plate, not the integration point strains. Because cask designers are using analyses of this type to determine if shell will puncture, a failure theory, including the effect of the tri-axial nature of the stress state, is also discussed. The results of this study will help to determine what constitutes an adequate finite element model for analyzing the puncture hypothetical accident.