Publications

Publications / SAND Report

Final LDRD Report for the Project Entitled: Biosensors Based on the Electrical Impedance of Tethered Lipid Bilayers on Planar Electrodes

Branch, Darren W.; Brozik, Susan M.

Impedance based, planar chemical microsensors are the easiest sensors to integrate with electronics. The goal of this work is a several order of magnitude increase in the sensitivity of this sensor type. The basic idea is to mimic biological chemical sensors that rely on changes in ion transport across very thin organic membranes (supported Bilayer Membranes: sBLMs) for the sensing. To improve the durability of bilayers we show how they can be supported on planar metal electrodes. The large increase in sensitivity over polyelectrolytes will come from molecular recognition elements like antibodies that bind the analyte molecule. The molecular recognition sites can be tied to the lipid bilayer capacitor membrane and a number of mechanisms can be used to modulate the impedance of the lipid bilayers. These include coupled ion channels, pore modification and double layer capacitance modification by the analyte molecule. The planar geometry of our electrodes allows us to create arrays of sensors on the same chip, which we are calling the ''Lipid Chip''.