Publications
Fast Grid Search Algorithm for Seismic Source Location
The spatial and temporal origin of a seismic energy source are estimated with a first grid search technique. This approach has greater likelihood of finding the global rninirnum of the arrival time misiit function compared with conventional linearized iterative methods. Assumption of a homogeneous and isotropic seismic velocity model allows for extremely rapid computation of predicted arrival times, but probably limits application of the method to certain geologic environments and/or recording geometries. Contour plots of the arrival time misfit function in the vicinity of the global minimum are extremely useful for (i) quantizing the uncertainty of an estimated hypocenter solution and (ii) analyzing the resolving power of a given recording configuration. In particular, simultaneous inversion of both P-wave and S-wave arrival times appears to yield a superior solution in the sense of being more precisely localized in space and time. Future research with this algorithm may involve (i) investigating the utility of nonuniform residual weighting schemes, (ii) incorporating linear and/or layered velocity models into the calculation of predicted arrival times, and (iii) applying it toward rational design of microseismic monitoring networks.