Publications
Fast algorithm for the solution of large-scale non-negativity constrained least squares problems
Algorithms for multivariate image analysis and other large-scale applications of multivariate curve resolution (MCR) typically employ constrained alternating least squares (ALS) procedures in their solution. The solution to a least squares problem under general linear equality and inequality constraints can be reduced to the solution of a non-negativity-constrained least squares (NNLS) problem. Thus the efficiency of the solution to any constrained least square problem rests heavily on the underlying NNLS algorithm. We present a new NNLS solution algorithm that is appropriate to large-scale MCR and other ALS applications. Our new algorithm rearranges the calculations in the standard active set NNLS method on the basis of combinatorial reasoning. This rearrangement serves to reduce substantially the computational burden required for NNLS problems having large numbers of observation vectors.