Publications
Experimental execution of 6DOF tests derived from field tests
Jacobs-O'Malley, Laura D.; Ross, Michael R.; Tipton, Gregory; Cross, Kevin R.; Hunter, Norman H.; Harvie, Julie M.; Nelson, Garrett D.
Recent advances in 6DOF testing has made 6DOF subsystem/component testing a preferred method because field environments are inherently multidimensional and can be better replicated with this technology. Unfortunately, it is rare that there is sufficient instrumentation in a field test to derive 6DOF inputs. One of the most challenging aspects of the test inputs to derive is the cross spectra. Unfortunately, if cross spectra are poorly defined, it makes executing the tests on a shaker difficult. In this study, tests were carried out using the inputs derived by four different inverse methods, as described in a companion paper. The tests were run with all 6DOF as well with just the three translational degrees of freedom. To evaluate the best way to handle the cross spectra, three different sets of tests were run: with no cross terms defined, with only the coherence defined, and with the coherence and phase defined. All of the different tests were compared using a variety of metrics to assess the efficacy of the specification methods. The drive requirements for the different methods are also compared to evaluate how the specifications affect the shaker performance. A number of the inverse methods show great promise for being able to derive inputs to a 6DOF shaker to replicate the flight environments.