Publications
Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners
Awe, T.J.; Peterson, Kyle J.; Yu, E.P.; McBride, Ryan D.; Sinars, Daniel S.; Gomez, Matthew R.; Jennings, C.A.; Martin, M.R.; Rosenthal, Stephen E.; Schroen, D.G.; Sefkow, Adam B.; Slutz, S.A.; Tomlinson, K.; Vesey, Roger A.
Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.