Publications

Publications / Conference Poster

Evaluation of XHVrB for capturing transition to detonation as measured by embedded gauges

Tuttle, Leah W.; LaJeunesse, Jeffrey W.; Schmitt, Robert G.; Harstad, Eric N.

The Extended History Variable Reactive Burn model (XHVRB), as proposed by Starkenburg, uses shock capturing rather than current pressure for calculating the pseudo-entropy that is used to model the reaction rate of detonating explosives. In addition to its extended capabilities for modeling explosive desensitization in multi-shock environments, XHVRB's shock capturing offers potential improvement for single shock modeling over the historically used workhorse model HVRB in CTH, an Eulerian shock physics code developed at Sandia National Labs. The detailed transition to detonation of PBX9501, as revealed by embedded gauge data, is compared to models with both HVRB and XHVRB. Improvements to the comparison of model to test data are shown with XHVRB, though not all of the details of the transition are captured by these single-rate models.