Publications
Evaluation of the PhaseNet Model Applied to the IMS Seismic Network
Garcia, Jorge A.; Heck, Stephen H.; Young, Christopher J.; Brogan, Ronald B.
Producing a complete and accurate set of signal detections is essential for automatically building and characterizing seismic events of interest for nuclear explosion monitoring. Signal detection algorithms have been an area of research for decades, but still produce large quantities of false detections and misidentify real signals that must be detected to produce a complete global catalog of events of interest. Deep learning methods have shown promising capabilities in effectively characterizing seismic signals for complex tasks such as identifying phase arrival times. We use the PhaseNet model, a UNet-based Neural Network, trained on local distance data from northern California to predict seismic arrivals on data from the International Monitoring System (IMS) global network. We use an analyst-curated bulletin generated from this data set to compare the performance of PhaseNet to that of the Short-Term Average/Long-Term Average (STA/LTA) algorithm. We find that PhaseNet has the potential of outperforming traditional processing methods and recommend the training of a new model with the IMS data to achieve optimal performance.