Publications

Publications / Journal Article

Evaluation of the irising effect of a slow-gating ICCD on laser-induced incandescence measurements of soot

Shaddix, Christopher R.

Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. To optimize the quantum efficiency of light collection, many of these devices are chosen to have characteristic intensifier gate times that are relatively slow, on the order of tens of nanoseconds. For many measurements associated with nanosecond laser sources, such as scattering-based diagnostics and most laser-induced fluorescence applications, the signals rise and decay sufficiently fast during and after the laser pulse that the intensifier gate may be set to close after the cessation of the signal and still effectively reject interferences associated with longer time scales. However, the relatively long time scale and complex temporal response of laser-induced incandescence (LII) of nanometer-sized particles (such as soot) offer a difficult challenge to the use of slow-gating ICCDs for quantitative measurements. In this paper, ultraviolet Rayleigh scattering imaging is used to quantify the irising effect of a slow-gating scientific ICCD camera, and an analysis is conducted of LII image data collected with this camera as a function of intensifier gate width. The results demonstrate that relatively prompt LII detection, generally desirable to minimize the influences of particle size and local gas pressure and temperature on measurements of the soot volume fraction, is strongly influenced by the irising effect of slow-gating ICCDs.