Publications
Evaluation of Probing Signals for Implementing Moving Horizon Inertia Estimation in Microgrids
Rauniyar, Manisha; Berg, Sterling; Subedi, Sunil; Hansen, Timothy M.; Fourney, Robert; Tonkoski, Reinaldo; Tamrakar, Ujjwol
This paper investigates the design of low-level probing signals for accurate estimation of inertia and damping constants in microgrids. Increasing utilization of renewable energy sources and their different dynamics has created unknowns in time-varying system inertia and damping constants. Thus, it is difficult to know these parameters at any given time in converter-dominated microgrids. This paper describes the design characteristics, considerations, methodology, and accuracy level of different probing signals in determining unknown parameters of a system. The main goal of this paper is to find an effective probing signal with a simple implementation and minimal impacts on power system operation. The test-case model in this paper analyzes nonintrusive excitation signals to perturb a power system model (i.e., square wave, multisine wave, filtered white Gaussian noise, and pseudo-random binary sequence). A moving horizon estimation (MHE)-based approach is then implemented in an energy storage system (ESS) in MATLAB/Simulink for estimation of inertia and damping constants of a system based on frequency measurements from a local phase-locked-loop (PLL). The accuracy of parameter estimates alters depending on the chosen probing signal; when estimating inertia and damping constants using MHE with the different probing signals, square waves yielded the lowest error.