Publications

Publications / Conference

Evaluation of arsenazo III as a contrast agent for photoacoustic detection of micromolar calcium transients

Cooley, Erika J.; Kruizinga, Pieter; Branch, Darren W.; Emelianov, Stanislav

Elucidating the role of calcium fluctuations at the cellular level is essential to gain insight into more complex signaling and metabolic activity within tissues. Recent developments in optical monitoring of calcium transients suggest that cells integrate and transmit information through large networks. Thus, monitoring calcium transients in these populations is important for identifying normal and pathological states of a variety of systems. Though optical techniques can be used to image calcium fluxes using fluorescent probes, depth penetration limits the information that can be acquired from tissues in vivo. Alternatively, the calcium-sensitive dye arsenazo III is useful for optical techniques that rely on absorption of light rather than fluorescence for image contrast. We report on the use of arsenazo III for detection of calcium using photoacoustics, a deeply penetrating imaging technique in which an ultrasound signal is generated following localized absorption of light. The absorbance properties of the dye in the presence of calcium were measured directly using UV-Vis spectrophotometry. For photoacoustic studies, a phantom was constructed to monitor the change in absorbance of 25 μM arsenazo III at 680 nm in the presence of calcium. Subsequent results demonstrated a linear increase in photoacoustic signal as calcium in the range of 1 - 20 μM complexed with the dye, followed by saturation of the signal as increasing amounts of calcium were added. For delivery of the dye to tissue preparations, a liposomal carrier was fabricated and characterized. This work demonstrates the feasibility of using arsenazo III for photoacoustic monitoring of calcium transients in vivo. © 2010 Copyright SPIE - The International Society for Optical Engineering.