Publications

Publications / Other Report

Evaluation of Adaptive Volt-VAR to Mitigate PV Impacts [Slides]

Azzolini, Joseph A.; Reno, Matthew J.

Distributed generation (DG) sources like photovoltaic (PV) systems with advanced inverters are able to perform grid-support functions, like autonomous Volt-VAR that attempts to mitigate voltage issues by injecting or consuming reactive power. However, the Volt-VAR function operates with VAR priority, meaning real power may be curtailed to provide additional reactive power support. Since some locations on the grid may be more prone to higher voltages than others, PV systems installed at those locations may be forced to curtail more power, adversely impacting the value of that PV system. Adaptive Volt-VAR (AVV) could be implemented as an alternative, whereby the Volt-VAR reference voltage changes over time, but this functionality has not been well-explored in the literature. In this work, the potential benefits and grid impacts of AVV were investigated using yearlong quasi-static time-series (QSTS) simulations. After testing a variety of allowable AVV settings, we found that even with aggressive settings AVV resulted in <0.01% real power curtailment and significantly reduced the reactive power support required from the PV inverter compared to conventional Volt-VAR but did not provide much mitigation for extreme voltage conditions. The reactive power support provided by AVV was injected to oppose large deviations in voltage (in either direction), indicating that it could be useful for other applications like reducing voltage flicker or minimizing interactions with other voltage regulating devices.