Publications

Publications / SAND Report

Evaluating Scalograms for Seismic Event Denoising

Lewis, Phillip J.; Gonzales, Antonio G.; Hammond, Patrick H.

Denoising contaminated seismic signals for later processing is a fundamental problem in seismic signals analysis. The most straightforward denoising approach, using spectral filtering, is not effective when noise and seismic signal occupy the same frequency range. Neural network approaches have shown success denoising local signal when trained on short-time Fourier transform spectrograms (Zhu et al 2018; Tibi et al 2021). Scalograms, a wavelet-based transform, achieved ~15% better reconstruction as measured by dynamic time warping on a seismic waveform test set than spectrograms, suggesting their use as an alternative for denoising. We train a deep neural network on a scalogram dataset derived from waveforms recorded by the University of Utah Seismograph Stations network. We find that initial results are no better than a spectrogram approach, with additional overhead imposed by the significantly larger size of scalograms. A robust exploration of neural network hyperparameters and network architecture was not performed, which could be done in follow on work.