Publications

Publications / Conference

Estimating the degree of nonlinearity in transient responses with zeroed early-time fast Fourier transforms

Allen, Matthew S.; Mayes, R.L.

This work presents time-frequency signal processing methods for detecting and characterizing nonlinearity in transient response measurements. The methods are intended for systems whose response becomes increasingly linear as the response amplitude decays. The discrete Fourier transform of the response data is found with various sections of the initial response set to zero. These frequency responses, dubbed zeroed early-time fast Fourier transforms (ZEFFTs), acquire the usual shape of linear frequency response functions (FRFs) as more of the initial nonlinear response is nullified. Hence, nonlinearity is evidenced by a qualitative change in the shape of the ZEFFT as the length of the initial nullified section is varied. These spectra are shown to be sensitive to nonlinearity, revealing its presence even if it is active in only the first few cycles of a response, as may be the case with macro-slip in mechanical joints. They also give insight into the character of the nonlinearity, potentially revealing nonlinear energy transfer between modes or the modal amplitudes below which a system behaves linearly. In some cases one can identify a linear model from the late time, linear response, and use it to reconstruct the response that the system would have executed at previous times if it had been linear. This gives an indication of the severity of the nonlinearity and its effect on the measured response. The methods are demonstrated on both analytical and experimental data from systems with slip and impact nonlinearities. © 2010 Elsevier Ltd. All rights reserved.