Publications
Entangling atomic spins with a Rydberg-dressed spin-flip blockade
Jau, Yuan-Yu J.; Hankin, A.M.; Keating, T.; Deutsch, I.H.; Biedermann, Grant B.
Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. Here we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shifts of order 1 MHz in units of Planck's constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. We employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity 81(2)%.