Publications
Engineering of large-pore lipid-coated mesoporous silica nanoparticles for dual cargo delivery to cancer cells
Nourredine, Achraf N.; Hjelvik, Elizabeth H.; Durfee, Paul N.; Brinker, C.J.
Lipid-coated mesoporous silica nanoparticles (LC-MSNs) have recently emerged as a next-generation cargo delivery nanosystem combining the unique attributes of both the organic and inorganic components. The high surface area biodegradable inorganic mesoporous silica core can accommodate multiple classes of bio-relevant cargos in large amounts, while the supported lipid bilayer coating retains the cargo and increases the stability of the nanocarrier in bio-relevant media which should promote greater bio-accumulation of LC-MSNs in cancer sites. In this paper, we report on the optimization of various sol–gel synthesis (pH, stirring speed) and post-synthesis (hydrothermal treatment) procedures to enlarge the MSN pore size and tune the surface chemistry so as to enable loading and delivery of large biomolecules. Finally, the proof of concept of the dual cargo-loaded nanocarrier has been demonstrated in immortalized cervical cancer HeLa cells using MSNs of various fine-tuned pore sizes.