Publications

Publications / Journal Article

Emission from quantum-dot high-ß microcavities: Transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; Schneider, Christian; Gies, Christopher; Jahnke, Frank; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high ß-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low ß-factor) cavity, that is, a sharp non-linearity in the input-output curve accompanied by noticeable linewidth narrowing, has to be reinforced by the equal-time second-order photon autocorrelation function to confirm lasing. The paper also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-ß microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g(2)(0) versus intracavity photon number.