Publications
Electrical contacts to nanotubes and nanowires : why size matters
Leonard, Francois L.; Talin, A.A.
Electrical contacts to semiconductors play a key role in electronics. For nanoscale electronic devices, particularly those employing novel low-dimensionality materials, contacts are expected to play an even more important role. Here we show that for quasi-one-dimensional structures such as nanotubes and nanowires, side contact with the metal only leads to weak band re-alignment, in contrast to bulk metal-semiconductor contacts. Schottky barriers are much reduced compared with the bulk limit, and should facilitate the formation of good contacts. However, the conventional strategy of heavily doping the semiconductor to obtain ohmic contacts breaks down as the nanowire diameter is reduced. The issue of Fermi level pinning is also discussed, and it is demonstrated that the unique density of states of quasi-one-dimensional structures make them less sensitive to this effect. Our results agree with recent experimental work, and should apply to a broad range of quasi-one-dimensional materials.