Publications
Efficient nearest neighbor searches in N-ABLE
The nearest neighbor search is a significant problem in transportation modeling and simulation. This paper describes how the nearest neighbor search is implemented efficiently with respect to running time in the NISAC Agent-Based Laboratory for Economics. The paper shows two methods to optimize running time of the nearest neighbor search. The first optimization uses a different distance metric that is more computationally efficient. The concept of a magnitude-comparable distance is described, and the paper gives a specific magnitude-comparable distance that is more computationally efficient than the actual distance function. The paper also shows how the given magnitude-comparable distance can be used to speed up the actual distance calculation. The second optimization reduces the number of points the search examines by using a spatial data structure. The paper concludes with testing of the different techniques discussed and the results.