Publications

Publications / Journal Article

Efficient Generalized Boundary Detection Using a Sliding Information Distance

Field, Richard; Quach, Tu-Thach Q.; Ting, Christina T.

We present a general machine learning algorithm for boundary detection within general signals based on an efficient, accurate, and robust approximation of the universal normalized information distance. Our approach uses an adaptive sliding information distance (SLID) combined with a wavelet-based approach for peak identification to locate the boundaries. Special emphasis is placed on developing an adaptive formulation of SLID to handle general signals with multiple unknown and/or drifting section lengths. Although specialized algorithms may outperform SLID when domain knowledge is available, these algorithms are limited to specific applications and do not generalize. SLID excels in these cases. We demonstrate the versatility and efficacy of SLID on a variety of signal types, including synthetically generated sequences of tokens, binary executables for reverse engineering applications, and time series of seismic events.