Publications

Publications / Conference Poster

Effects of spatial energy distribution on defects and fracture of LPBF 316L stainless steel

Jost, Elliott W.; Miers, John C.; Robbins, Aron R.; Moore, David G.; Saldana, Christopher

Measures of energy input and spatial energy distribution during laser powder bed fusion additive manufacturing have significant implications for the build quality of parts, specifically relating to formation of internal defects during processing. In this study, scanning electron microscopy was leveraged to investigate the effects of these distributions on the mechanical performance of parts manufactured using laser powder bed fusion as seen through the fracture surfaces resulting from uniaxial tensile testing. Variation in spatial energy density is shown to manifest in differences in defect morphology and mechanical properties. Computed tomography and scanning electron microscopy inspections revealed significant evidence of porosity acting as failure mechanisms in printed parts. These results establish an improved understanding of the effects of spatial energy distributions in laser powder bed fusion on mechanical performance.