Publications

Publications / Conference Paper

Effectiveness and nonlinear characterization of energy harvesting absorbers with mechanical and magnetic stoppers

Alvis, Tyler H.; Mesh, Mikhail M.; Abdelkefi, Abdessattar

Tuned mass dampers are a common method implemented to control structure’s vibrations. Most tuned-mass dampers only transfer the mechanical energy of the primary system to a secondary system, but it is desirable to convert the primary systems’ mechanical energy into usable electric energy. This study achieves this by using a piezoelectric energy harvester as a tuned-mass damper. Additionally, this study focuses on improving the amount of energy harvested by including amplitude stoppers. Mechanical stoppers have been investigated to sufficiently widen the response of piezoelectric energy harvesters. Furthermore, magnetic stoppers are compared to the mechanical stopper’s response. A nonlinear reduced-order model using Galerkin discretization and Euler-Lagrange equations is developed. The goal of this study is to maximize the energy harvested from the absorber without negatively affecting the control of the primary structure.