Publications
Effect of temperature and CO2 concentration on laser-induced breakdown spectroscopy measurements of alkali fume
MOLINA OCHOA, Alejandro N.; Sickafoose, Shane S.; Shaddix, Christopher R.
Laser-induced breakdown spectroscopy (LIBS) was used in the evaluation of aerosol concentration in the exhaust of an oxygen/natural-gas glass furnace. Experiments showed that for a delay time of 10 {micro}s and a gate width of 50 {micro}s, the presence of CO{sub 2} and changes in gas temperature affect the intensity of both continuum emission and the Na D lines. The intensity increased for the neutral Ca and Mg lines in the presence of 21% CO{sub 2} when compared to 100% N{sub 2}, whereas the intensity of the Mg and Ca ionic lines decreased. An increase in temperature from 300 to 730 K produced an increase in both continuum emission and Na signal. These laboratory measurements were consistent with measurements in the glass furnace exhaust. Time-resolved analysis of the spark radiation suggested that differences in continuum radiation resulting from changes in bath composition are only apparent at long delay times. The changes in the intensity of ionic and neutral lines in the presence of CO{sub 2} are believed to result from higher free electron number density caused by lower ionization energies of species formed during the spark decay process in the presence of CO{sub 2}. For the high Na concentration observed in the glass furnace exhaust, self-absorption of the spark radiation occurred. Power law regression was used to fit laboratory Na LIBS calibration data for sodium loadings, gas temperatures, and a CO{sub 2} content representative of the furnace exhaust. Improvement of the LIBS measurement in this environment may be possible by evaluation of Na lines with weaker emission and through the use of shorter gate delay times.