Publications
Effect of high-viscosity interphases on drainage between hydrophilic surfaces
Feibelman, Peter J.; Feibelman, Peter J.
Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water 'interphase' (of width {approx} a few nm) whose viscosity is much higher than the bulk liquid's. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase viscosity of {approx}59 KPa-sec (or {approx}6.6 x 10{sup 7} times the viscosity of bulk water at 25C) from Interfacial Force Microscope measurements with both tip and sample functionalized hydrophilic by OH-terminated tri(ethylene glycol) undecylthiol, self-assambled monolayers.