Publications
Dynamic tensile characterization of a 4330-V steel with kolsky bar techniques
Song, Bo S.; Connelly, Kevin C.
There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical striker set inside the gun barrel is launched to impact on the end cap that is threaded into the open end of the gun barrel, producing a tension on the gun barrel and the incident bar.