Publications

Publications / Conference

Dynamic initiation fracture toughness of high strength steel alloys

Foster, John T.; Luk, Vincent K.; Chen, Weinong W.

Determination of fracture toughness for metals under quasi-static loading conditions can follow well-established procedures and ASTM standards. The use of metallic materials in impact-related applications requires the determination of dynamic fracture toughness for these materials. There are two main challenges in experiment design that must be overcome before valid dynamic data can be obtained. Dynamic equilibrium over the entire specimen needs to be approximately achieved to relate the crack tip loading state to the far-field loading conditions. The loading rate at the crack tip should be maintained nearly constant during an experiment to delineate rate effects on the values of dynamic fracture toughness. A recently developed experimental technique for determining dynamic fracture toughness of brittle materials has been adapted to measure the dynamic initiation fracture toughness of high strength steel alloys. A split-Hopkinson pressure bar is used to apply the dynamic loading. A pulse shaper is used to achieve constant loading rate at the crack tip and dynamic equilibrium across the specimen. A four-point bending configuration is used at the impact section of the setup. ©2008 Society for Experimental Mechanics Inc.