Publications

Publications / SAND Report

Development of self-sensing materials for extreme environments based on metamaterial concept and additive manufacturing

Wang, Yifeng

Structural health monitoring of an engineered component in a harsh environment is critical for multiple DOE missions including nuclear fuel cycle, subsurface energy production/storage, and energy conversion. Supported by a seeding Laboratory Directed Research & Development (LDRD) project, we have explored a new concept for structural health monitoring by introducing a self-sensing capability into structural components. The concept is based on two recent technological advances: metamaterials and additive manufacturing. A self-sensing capability can be engineered by embedding a metastructure, for example, a sheet of electromagnetic resonators, either metallic or dielectric, into a material component. This embedment can now be realized using 3-D printing. The precise geometry of the embedded metastructure determines how the material interacts with an incident electromagnetic wave. Any change in the structure of the material (e.g., straining, degradation, etc.) would inevitably perturbate the embedded metastructures or metasurface array and therefore alter the electromagnetic response of the material, thus resulting in a frequency shift of a reflection spectrum that can be detected passively and remotely. This new sensing approach eliminates complicated environmental shielding, in-situ power supply, and wire routing that are generally required by the existing active-circuit-based sensors. The work documented in this report has preliminarily demonstrated the feasibility of the proposed concept. The work has established the needed simulation tools and experimental capabilities for future studies.