Publications
Determining the electrical conductivity of metals using the 2 MA Thor pulsed power driver
Porwitzky, Andrew J.; Cochrane, Kyle C.; Stoltzfus, Brian S.
We present the development of a pulsed power experimental technique to infer the electrical conductivity of metals from ambient to high energy density conditions. The method is implemented on Thor, a moderate scale (1-2 MA) pulsed power driver. The electrical conductivity of copper at elevated temperature (>4000 K) and pressure (>10 GPa) is determined, and a new tabular material model is developed, guided by density functional theory, which preserves agreement with existing experimental data. Minor modifications (<10%) are found to be necessary to the previous Lee-More-Desjarlais model isotherms in the vicinity of the melt transition in order to account for observed discrepancies with the new experimental data. An analytical model for magnetic direct drive flyer acceleration and Joule heating induced vaporization based on the Tsiolkovsky "rocket equation"is presented to assess sensitivity of the method to minor changes in electrical conductivity.