Publications
Determine the Electrode Configuration and Sensitivity of the Enclosure Dimensions when Performing Arc Flash Analysis
Zia, Kaynat; Papasani, Anusha; Rosewater, David M.; Lee, Wei J.
Arc flash hazard prediction methods have become more sophisticated because the knowledge about arc flash phenomenon has advanced since the publication of IEEE Std. 1584-2002 [17]. The IEEE Std. 1584-2018 [13] has added parameters for more accurate arc flash incident energy, arcing current and protection boundary estimation. The parameters in the updated estimation models include electrode configuration, open circuit voltage, bolted fault current, arc duration, gap width, working distance, and enclosure dimension. The sensitivity and effect changes of other parameters have been discussed the previous literatures [8] [9] [11] [2] [12] [15], this paper explains the fundamental theory on the selection of electrode configurations and performs sensitivity analysis of the enclosure dimension, that have been introduced in the IEEE Std. 1584-2018. According to the newly published model for incident energy (IE) estimation, the IE between VCB (Vertical Electrodes inside a metal Box) and HCB (Horizontal Electrodes inside a metal Box) can differ by a factor of two with other parameters constant. Using HCB as the worst-case scenario to determine the personal protection requirements [7] [10] may not be the best practice in all circumstances. This paper provides guidance for electrode configuration selection and a sensitivity analysis for determining a reasonable engineering margin when actual dimension is not available.