Publications

Publications / Conference Poster

Design optimization of GaN vertical power diodes and comparison to Si and SiC

Flicker, Jack D.; Kaplar, Robert K.

In order to determine how material characteristics percolate up to system-level improvements in power dissipation for different material systems and device types, we have developed an optimization tool for power diodes. This tool minimizes power dissipation in a diode for a given system operational regime (reverse voltage, forward current density, frequency, duty cycle, and temperature) for a variety of device types and materials. We have carried out diode optimizations for a wide range of system operating points to determine the regimes for which certain power diode materials/devices are favored. In this work, we present results comparing state-of-the-art Si and SiC merged PiN Schottky (MPS) diodes to vertical GaN (v-GaN) PiN diodes and as-yet undeveloped v-GaN Schottky barrier diodes (SBDs). The results of this work show that for all conditions tested, SiC MPS and v-GaN PiN diodes are preferred over Si MPS diodes. v-GaN PiN diodes are preferred over SiC MPS diodes for high-voltage / moderate-frequency operation with the limits of the v-GaN PiN preferred regime, increasing with increasing forward current density. If a v-GaN SBD diode were available, it would be preferred over all other devices at low to moderate voltages, for all frequencies from 100 Hz to 1 MHz.