Publications
Density matrix approach to photon-assisted tunneling in the transfer Hamiltonian formalism
Davids, Paul D.; Shank, Joshua S.
The transfer Hamiltonian tunneling current is derived in a time-dependent density matrix formulation and is used to examine photon-assisted tunneling. Bardeen's tunneling expression arises as the result of first-order perturbation theory in a mean-field expansion of the density matrix. Photon-assisted tunneling from confined electromagnetic fields in the forbidden tunnel barrier region occurs due to time-varying polarization and wave-function overlap in the gap which leads to a nonzero tunneling current in asymmetric device structures, even in an unbiased state. The photon energy is seen to act as an effective temperature-dependent bias in a uniform barrier asymmetric tunneling example problem. Higher-order terms in the density matrix expansion give rise to multiphoton enhanced tunneling currents that can be considered an extension of nonlinear optics where the nonlinear conductance plays a similar role as the nonlinear susceptibilities in the continuity equations.