Publications

Publications / Journal Article

Demonstration of a MOT in a sub-millimeter membrane hole

Lee, Jongmin L.; Biedermann, Grant; Mudrick, John M.; Douglas, Erica A.; Jau, Yuan-Yu J.

We demonstrate the generation of a cold-atom ensemble within a sub-millimeter diameter hole in a transparent membrane, a so-called “membrane MOT”. With a sub-Doppler cooling process, the atoms trapped by the membrane MOT are cooled down to 10 μ K. The atom number inside the unbridged/bridged membrane hole is about 10 4 to 10 5, and the 1 / e2-diameter of the MOT cloud is about 180 μ m for a 400 μ m-diameter membrane hole. Such a membrane device can, in principle, efficiently load cold atoms into the evanescent-field optical trap generated by the suspended membrane waveguide for strong atom-light interaction and provide the capability of sufficient heat dissipation at the waveguide. This represents a key step toward the photonic atom trap integrated platform (ATIP).