Publications

Publications / Conference Poster

Decision tree ensemble machine learning for rapid QSTS simulations

Blakely, Logan; Reno, Matthew J.; Broderick, Robert J.

High-resolution, quasi-static time series (QSTS) simulations are essential for modeling modern distribution systems with high-penetration of distributed energy resources (DER) in order to accurately simulate the time-dependent aspects of the system. Presently, QSTS simulations are too computationally intensive for widespread industry adoption. This paper proposes to simulate a portion of the year with QSTS and to use decision tree machine learning methods, random forests and boosting ensembles, to predict the voltage regulator tap changes for the remainder of the year, accurately reproducing the results of the time-consuming, brute-force, yearlong QSTS simulation. This research uses decision tree ensemble machine learning, applied for the first time to QSTS simulations, to produce high-accuracy QSTS results, up to 4x times faster than traditional methods.