Publications
Data Fusion via Neural Network Entropy Minimization for Target Detection and Multi-Sensor Event Classification
Linville, Lisa L.; Anderson, Dylan Z.; Michalenko, Joshua J.; Garcia, Jorge A.
Broadly applicable solutions to multimodal and multisensory fusion problems across domains remain a challenge because effective solutions often require substantive domain knowledge and engineering. The chief questions that arise for data fusion are in when to share information from different data sources, and how to accomplish the integration of information. The solutions explored in this work remain agnostic to input representation and terminal decision fusion approaches by sharing information through the learning objective as a compound objective function. The objective function this work uses assumes a one-to-one learning paradigm within a one-to-many domain which allows the assumption that consistency can be enforced across the one-to-many dimension. The domains and tasks we explore in this work include multi-sensor fusion for seismic event location and multimodal hyperspectral target discrimination. We find that our domain- informed consistency objectives are challenging to implement in stable and successful learning because of intersections between inherent data complexity and practical parameter optimization. While multimodal hyperspectral target discrimination was not enhanced across a range of different experiments by the fusion strategies put forward in this work, seismic event location benefited substantially, but only for label-limited scenarios.