Publications
Data-driven learning of nonautonomous systems
Qin, Tong; Chen, Zhen; Jakeman, John D.; Xiu, Dongbin
We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.