Publications
Coupling MOS quantum dot and phosphorous donor qubit systems
Rudolph, Martin R.; Harvey-Collard, P.; Jock, R.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, M.P.; Carroll, Malcolm
Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.