Publications

Publications / Journal Article

Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films

Burckel, David B.; Goldflam, Michael G.; Musick, Katherine M.; Resnick, Paul J.; Armelles, Gaspar; Sinclair, Michael B.

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.