Publications
Coupled thermal stress simulations of ductile tearing
Dion, Kristin D.; Neilsen, Michael K.
Predictions for ductile tearing of a geometrically complex Ti-6Al-4V plate were generated using a Unified Creep Plasticity Damage model in fully coupled thermal stress simulations. Uniaxial tension and butterfly shear tests performed at displacement rates of 0.0254 and 25.4 mm/s were also simulated. Results from these simulations revealed that the material temperature increase due to plastic work can have a dramatic effect on material ductility predictions in materials that exhibit little strain hardening. This occurs because the temperature increase causes the apparent hardening of the material to decrease which leads to the initiation of deformation localization and subsequent ductile tearing earlier in the loading process.