Publications

Publications / SAND Report

Correcting Cross-polarization Monopulse Response of Reflector Antennas

Brock, Billy C.; Allen, Steven E.

The monopulse response of radar systems utilizing a short-focal-length offset-fed parabolic reflector can be compromised by depolarization of the signal by the target and by multipath scattering from nearby objects. The polarimetric behavior of this type of antenna is examined. The use of a shroud to reduce multipath interaction with nearby objects is also described. The mechanism through which man-made targets can introduce cross-polarization components into the scattered field is explained. Two kinds of polarization filters, suitable for linear polarization, are described for mitigating the effects of depolarization due to cross-polarization scattering. The benefit of the application of a polarization filter is demonstrated by modeling a monopulse radar system viewing a dihedral corner reflector. The model demonstrates dramatic performance improvement when the filter is used, showing that usable performance can be achieved even when the target depolarization is so severe that the cross-polarized signal is more than an order of magnitude stronger than the desired co-polarized signal. Relevant and useful reference material is also included in the form of appendices describing the relationship between different polarization representations and demonstrating the conditions under which Maxwell's equations can be considered to be scale-invariant.