Publications

Publications / Conference Poster

Considerations for improvements to the 25 TW Saturn high-current driver

Savage, Mark E.; Struve, Kenneth W.; Austin, Kevin N.; Coffey, S.K.; Jones, Peter A.; Joseph, Nathan R.; Kirschner, Debra S.; Lott, John A.; Oliver, Bryan V.; Spielman, Rick B.

The Saturn X-ray generator is a 2.5 megavolt, 10 megampere electrical driver at Sandia National Laboratories. Saturn has been in operation for more than 30 years. Work is underway to identify key areas of the machine, improvement of which would benefit operational efficiency and reproducibility of the system. Saturn is used to create high-dose, short-pulse intense ionizing radiation environments for testing electronic and mechanical systems. Saturn has 36 identical modules driving a common electron beam bremsstrahlung load. Each module utilizes a microsecond Marx generator, a megavolt gas switch, and untriggered water switches in a largely conventional pulse-forming system. Achieving predictable and reliable radiation exposure is critical for users of the facility. Saturn has endured decades of continual use with minimal opportunities for research, improvements, or significant preventive maintenance. Because of degradation in components and limited attention to electrical performance, the facility has declined both in the number of useful tests per year and their repeatability. The Saturn system resides in a cylindrical tank 33m in diameter, and stores 5.6 MJ at the nominal operating Marx charge voltage. The system today is essentially identical to that described by Bloomquist in 1987. [1] Advances in technology for large pulsed power systems affords opportunities to improve the performance and more efficiently utilize the energy stored. Increased efficiency can improve reliability and reduce maintenance. The goals for the Saturn improvement work are increased shot rate, reduced X-ray dose shot-To-shot dose fluctuation, and reduced required maintenance. Major redesign with alternate pulsed power technology is considered outside the scope of this effort. More X-ray dose, larger exposure area, and lower X-ray endpoint energy are also important considerations but also deemed outside the scope of the present project due to schedule and resource constraints. The first considerations, described here, are improving the present design with better components.