Publications

Publications / SAND Report

Computing confidence intervals on solution costs for stochastic grid generation expansion problems

Watson, Jean-Paul W.

A range of core operations and planning problems for the national electrical grid are naturally formulated and solved as stochastic programming problems, which minimize expected costs subject to a range of uncertain outcomes relating to, for example, uncertain demands or generator output. A critical decision issue relating to such stochastic programs is: How many scenarios are required to ensure a specific error bound on the solution cost? Scenarios are the key mechanism used to sample from the uncertainty space, and the number of scenarios drives computational difficultly. We explore this question in the context of a long-term grid generation expansion problem, using a bounding procedure introduced by Mak, Morton, and Wood. We discuss experimental results using problem formulations independently minimizing expected cost and down-side risk. Our results indicate that we can use a surprisingly small number of scenarios to yield tight error bounds in the case of expected cost minimization, which has key practical implications. In contrast, error bounds in the case of risk minimization are significantly larger, suggesting more research is required in this area in order to achieve rigorous solutions for decision makers.