Publications

Publications / Conference Poster

Computational capability to study airborne release of solids and container breach due to mechanical insults

Louie, David L.; Dingreville, Remi P.; Bignell, John B.; Gilkey, Lindsay N.; Le, San L.; Gordon, Natalie G.

Engineers performing safety analyses throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Handbook, DOE-HDBK-3010, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, to determine radionuclide source terms from postulated accident scenarios. In calculating source terms, analysts tend to use the DOE Handbook's bounding values on airborne release fractions (ARFs) and respirable fractions (RFs) for various categories of insults (representing potential accident release categories). This is typically due to both time constraints and the avoidance of regulatory critique. Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., explosion-induced fragmentation, drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools. This paper presents the use of Sandia National Laboratories' SIERRA Solid Mechanics (SIERRA/SM) finite element code to investigate the behavior of two widely utilized waste containers (Standard Waste Box and 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the containers is assessed, and a methodology is presented for calculating bounding airborne release fractions from calculated breach areas for the various accident conditions considered. The paper also describes a novel multi-scale constitutive model recently implemented in SIERRA/SM that can simulate the fracture of brittle materials such as PuO2 and determining the amount of hazardous respirable particles generated during the fracture process. Comparisons are made between model predictions and simple bench-top experiments.