Publications

Publications / SAND Report

Computational and Experimental Validation of Fractal-Fin, Dimpled Solar Heat Collector

Rodriguez, Salvador B.

A 3 foot x 3 foot x 3 foot aluminum solar collector was manufactured using computer numerical control. The interior of the device included six triangular dimpled fins for enhanced heat transfer. The interior vertical wall on the south side was also dimpled. The solar collector working fluid was based on water, and the collector consisted solely of passive heat transfer mechanisms (no moving parts), making it ideal for off-the-grid and rural applications. Two types of heat transfer experiments were conducted. One experiment had external flat heaters attached on the top and the front side, while the other four sides were insulated. Except for the bottom surface, the second experiment had all its exterior surfaces sprayed with black solar paint to collect as much solar heat as possible. Temperature data as a function of time was collected using 14 thermocouples spread strategically throughout the solar collector. In addition, computational fluid dynamics (CFD) simulations were conducted using the dynamic Smagorinsky large eddy simulation turbulence model. The first simulation considered that both the top and front surfaces were exposed to a fixed temperature of 313.7 K (105 °F), while the remaining four surfaces were insulated. For the second simulation, all conditions were the same, except that the temperature for both heated surfaces was raised to 350 K (170.3 °F). The two temperatures are expected to bound the solar collector operational temperature during the late- Spring, Summer, and early-Fall months. The solar collector design, experimental data, CFD output, and a discussion of five manufacturing approaches and costs are documented in this report.