Publications

Publications / Journal Article

Compressive sensing adaptation for polynomial chaos expansions

Tsilifis, Panagiotis; Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, H.N.; Ghanem, Roger G.

Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.