Publications

Publications / Journal Article

Competing channels in the propene+OH reaction: Experiment and validated modeling over a broad temperature and pressure range

Kappler, Claudia; Zador, Judit Z.; Welz, Oliver W.; Fernandes, Ravi X.; Olzmann, Matthias; Taatjes, Craig A.

Although the propene+OH reaction has been in the center of interest of numerous experimental and theoretical studies, rate coefficients have never been determined experimentally between ∼600 and ∼ 750 K, where the reaction is governed by the complex interaction of addition, back-dissociation and abstraction. In this work OH time-profiles are measured in two independent laboratories over a wide temperature region (200-950 K) and are analyzed incorporating recent theoretical results. The datasets are consistent both with each other and with the calculated rate coefficients. We present a simplified set of reactions validated over a broad temperature and pressure range, that can be used in smaller combustion models for propene+OH. In addition, the experimentally observed kinetic isotope effect for the abstraction is rationalized using ab initio calculations and variational transition-state theory. We recommend the following approximate description of the OH+C 3H6 reaction: C3H6+OH⇄C 3H6OH (R1a,R-1a) C3H6+OH→C 3H5+H2O (R1b) k1a(200K ≤ T ≤ 950 K;1 bar ≤ P) = 1.45×10-11 (T/K)-0.18e 460K/Tcm3 molecule-1s-1 k -1a(200 K ≤ T ≤ 950 K; 1 bar ≤ P) = 5.74×10 12e-12690K/Ts-1 k1b(200 K ≤ T ≤ 950 K) = 1.63×10-18 (T/K)2.36e -725K/T cm3 molecule-1s-1. © by Oldenbourg Wissenschaftsverlag, München.