Publications
Comparison of single-ion molecular dynamics in common solvents
Muralidharan, A.; Pratt, L.R.; Chaudhari, Mangesh I.; Rempe, Susan R.
Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γt, observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γt. But the corresponding analysis of the solventberg Li+H2O4 does conform to the standard picture set by all the PF6- results.