Publications

Publications / Journal Article

Comparison of continuum and cross-core theories of dynamic strain aging

Epperly, E.N.; Sills, Ryan B.

Dynamic strain aging (DSA) is the process of solute atoms segregating around dislocations on the timescale of loading. Continuum theories of DSA derived from elasticity theory have been shown to severely overpredict both the timescale and strengthening of DSA. Recently, cross-core theory was developed to reconcile this gap, invoking a special single-atomic-hop diffusion mechanism across the core of an extended dislocation. In this work, we show that the classical continuum theory expression for the rate of solute segregation is in error. After correcting this error, we show that continuum theory predictions match cross-core theory when the elevated diffusivity near the dislocation core is accounted for. Our findings indicate that continuum theory is still a useful tool for studying dislocation-solute interactions.