Publications

Publications / Conference

Comparison of calculated and experimental results of fragmenting cylinder experiments

Kipp, Marlin E.; Kipp, Marlin E.

The Grady-Kipp fragmentation model provides a physically based method for determining the fracture and breakup of materials under high loading rates. Recently, this model has been implemented into the CTH Shock Physics Code and has been used to simulate several published experiments. Materials studied in this paper are AerMet 100 steel and a 90% tungsten alloy. The experimental geometry consists of a right circular cylinder filled with an explosive main charge that is initiated at its center. The sudden expansion of the resulting detonation products causes fracture of the cylinder. Strain rates seen in the cylinder are on the order of 10{sup 4} s{sup {minus}1}. The average fragment sizes calculated with the Grady-Kipp fragmentation model successfully replicate the mean fragment size obtained from the experimental fragment distribution. When Poisson statistics are applied to the calculated local average fragment sizes, good correlation is also observed with the shape of the experimental cumulative fragment distribution. The experimental fragmentation results, CTH numerical simulations, and correlation of these numerical results with the experimental data are described.