Publications
Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel
Wise, Jack L.; Adams, David P.; Nishida, E.E.; Song, Bo S.; Maguire, M.C.; Carroll, Jay D.; Reedlunn, Benjamin R.; Bishop, Joseph E.; Palmer, T.A.
Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net-or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for onedimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired waveprofile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.