Publications
Combining Simulation and Experiment for Acoustic-Load Identification
Lopp, Garret K.; Schultz, Ryan S.
Bayesian inference is a technique that researchers have recently employed to solve inverse problems in structural dynamics and acoustics. More specifically, this technique can identify the spatial correlation of a distributed set of pressure loads generated during vibroacoustic testing. In this context, Bayesian inference augments the experimenter’s prior knowledge of the acoustic field prior to testing with vibration measurements at several locations on the test article to update these pressure correlations. One method to incorporate prior knowledge is to use a theoretical form of the correlations; however, theoretical forms only exist for a few special cases, e.g., a diffuse field or uncorrelated pressures. For more complex loading scenarios, such as those arising in a direct-field acoustic test, utilizing one of these theoretical priors may not be able to accurately reproduce the acoustic loading generated during the experiment. As such, this work leverages the pressure correlations generated from an acoustic simulation as the Bayesian prior to increase the accuracy of the inference for complex loading scenarios.